United States Patent

US009064054B2

(12) 10y Patent No.: US 9,064,054 B2
Locker et al. 45) Date of Patent: Jun. 23, 2015
(54) SYNCHRONIZING EXECUTION OF A ;,(3);5‘,12; g%: ggggg %//Iaﬁlews [771147//3 182?
s s atetal.
TESTING APPLICATION 7,490,319 B2* 2/2009 Blackwell et al. .o 7177124
evs P . 7,680,917 B2* 3/2010 Silvert 709/223
(75) Inventors: Jiti I,Jvocker,]3:110che nad Svitavou (CZ); 7.823.023 B2* 10/2010 Kwan etal. . L 714/38.1
Lukas Petrovicky, Most (CZ) 7,840,851 B2* 11/2010 Hayutin 714/46
7,844,861 B2* 11/2010 Hegarty etal. . . 714/46
(73) Assignee: Red Hat, Inc., Raleigh, NC (US) 8,185910 B2* 52012 Swildens 719/310
8,302,080 B2* 10/2012 Wassermann et al. .. 717/131
I 2003/0081560 Al* 5/2003 Honda 370/252
(*) Notice: Subject. to any dlsclalmer,. the term of this 2005/0005198 AL* 112005 Vakratetal. 714/37
patent is extended or adjusted under 35 2007/0168970 A1* 7/2007 Lietal. 717124
U.S.C. 154(b) by 484 days. 2009/0133000 Al* 5/2009 Sweis etal. . . 717124
2009/0150867 Al* 6/2009 Vorungatio 7177124
(21) Appl. No.: 12/981,188 2009/0254329 Al* 10/2009 Thakkarcccccooninns. 703/13
2010/0251217 Al* 9/2010 Miller 7177126
R 2010/0332535 Al* 12/2010 Weizman etal. 707/770
(22) Filed: Dec. 29,2010 2012/0023484 A1* 1/2012 Demant et al. ... o 717125
(65) Prior Publication Dat 2012/0174067 Al* 7/2012 Lockeretal. 717/124
rior Publication Data
* cited by examiner
US 2012/0174067 A1 Jul. 5, 2012 Y
Primary Examiner — Don Wong
D IGn0t¢-$glﬁ‘?/44 2006.01 Assistant Examiner — Theodore Hebert
GOGF 11/36 52006.013 (74) Attorney, Agent, or Firm — Lowenstein Sandler LLP
(52) US.CL (57) ABSTRACT
CPC ot GO6F 11/3688 (2013.01) n .
(58) Field of Classification Search A mf:thqd agd apparatus for synchromzmg execution of a test
CPC. oo GOGF 11/3688 ~ @pplication is described. In one embodiment, the method
includes receiving two or more commands from a test appli-
USPC oo 717/124 : g ; s o pp
See anplication file for complete search histo cation. The method may also include distributing a first com-
PP P ty: mand from the received two or more commands to a plurality
(56) References Cited gf client computer systems, each client computer system to
issue the first command to a server computer system. Further-
U.S. PATENT DOCUMENTS more, the method may include distributing a second com-
mand from the received two or more commands to the plu-

6,023,773 A * 2/2000 O’Donnell et al. 714/40
6,185,701 B1* 2/2001 Marullo et al. .

6,324,492 B1* 11/2001 Rowe
6,567,767 B1* 5/2003 Mackeyetal. ...
6,907,546 B1* 6/2005 Haswelletal.
6,993,747 B1* 1/2006 Friedman

rality of client computer systems after receipt of a response to
the first command from each of the plurality of client com-
puter systems.

20 Claims, 5 Drawing Sheets

T

e o
o R N
‘CH&:‘&&“ A TK’?N " SO .pi"}“ B TR f-‘:,'\'b". {%\\\\“\“*\“\“\"" g\?..z :’;,i
nouly . g ; P
SYETER A0k Pan

US 9,064,054 B2

Sheet 1 of 5

Jun. 23, 2015

U.S. Patent

Lol

~.~.~.~.~.~.~.~.~.~.~.~._4*.-
bund

T S

.s.\s.“s...........,...cf\
s s~
s s g o,

SO ANIALEN

= K

i e o~
Moottt

RO YIIMOMMS

b

US 9,064,054 B2

£ "D

s K
¢ A
/
4 ~,
¢
y v THE (v L
7 2 % BGL ARG SMUSRL

Sheet 2 of 5

|
*®
e

FEE ,
.‘.c.}(.)....) e e .\.H
TR NS PeeeBel JUNERT i R 4

Jun. 23, 2015

U.S. Patent

/. P
“ f o
5
*,
%
~, el
Y bHng [i1

S N R

U.S. Patent Jun. 23,2015 Sheet 3 of 5 US 9,064,054 B2

i -

CAIERT 1 : CLIENT 2 CHIENT 3

FIG, 3

U.S. Patent

Jun. 23, 2015

Sheet 4 of 5

¥

US 9,064,054 B2

{0 waar >
S o *
k §
REDEIVE A GURRANT PRGH A TESY APPLICATIN
¥
FORVARD THE CORBGAND T3 & TERTHHG OONTROLLER
"?,
LIBRARIES AT ??’x. ,,L."%(f‘i’)**;‘%?i:'?, 3;’5?”?&?5 -
THE COMMANG FROM THE CLIENTY
TER BYSTRG

REPORY

U.S. Patent Jun. 23, 2015 Sheet 5 of 5 US 9,064,054 B2

BN w VDEOCISPLAY

™,
4
i
<
e
\".
i
e
ol
%3

AN MERDRY

ol i o APHANUMERID
- T P DEWCE

COMPUTER BEADMULE s
. - E4

i

E 3
¥

FiIG. &

US 9,064,054 B2

1
SYNCHRONIZING EXECUTION OF A
TESTING APPLICATION

TECHNICAL FIELD

Embodiments of the invention relate to the field of appli-
cation testing, and more particularly, to synchronizing execu-
tion of a graphical user interface test application at a plurality
of client computer systems.

BACKGROUND

Client-server applications are distributed software systems
that typically include a central server that provides services to
anumber of clients. The services are provided by sending data
between clients and the server. When a client needs a service,
it sends a request to the server. The server processes the
request and sends an answer back to the client.

Automated functional user interface testing is a kind of
testing that simulates a user operating on an application’s user
interface (UI) and verifies its functionality. The key compo-
nent of such tests is a program library that is able to simulate
a real user input by triggering events associated with actions
like clicking mouse buttons or typing text. The test follows a
given test case by using the application programming inter-
face (API) of the library and verifies that the Ul responds as
expected.

In a client-server application framework, timing issues
arise when testing an application. For example, users may be
enabled by a client application to import files into a database
on a server. The database is shared for the client-server appli-
cation, and users may overwrite other users’ files by using the
same file name. If more than one requests to import a file of
the same name arrives at the server at the same time, only the
first import request will succeed. The rest of the import
requests cannot be satisfied and their originators will be noti-
fied by the server that the operation failed. Thus, in order to
test such error conditions in a client-side application, the
timing and distribution of client application requests becomes
crucial.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood more fully from
the detailed description given below and from the accompa-
nying drawings of various embodiments of the invention,
which, however, should not be taken to limit the invention to
the specific embodiments, but are for explanation and under-
standing only.

FIG.11is ablock diagram of exemplary system architecture
for a test synchronization system.

FIG. 2 is a block diagram of one embodiment of a test
synchronization system.

FIG. 3 illustrates one embodiment of testing application
commands synchronized by a test synchronization system.

FIG. 4 is a flow diagram of one embodiment of a method
for synchronizing testing application commands executed by
a plurality of client computer systems.

FIG. 5 illustrates a diagrammatic representation of a
machine in the exemplary form of a computer system.

DETAILED DESCRIPTION

A method and apparatus for synchronizing execution of a
test application is described. In one embodiment, the method
includes receiving two or more commands from a test appli-
cation. The method may also include distributing a first com-

10

20

25

40

45

55

60

2

mand from the received two or more commands to a plurality
of client computer systems, each client computer system to
issue the first command to a server computer system. Further-
more, the method may include distributing a second com-
mand from the received two or more commands to the plu-
rality of client computer systems after receipt of a response to
the first command from each of the plurality of client com-
puter systems.

FIG.1is ablock diagram of exemplary system architecture
100 for a test synchronization system. In one embodiment,
the system architecture 100 includes client systems 108, test
synchronization system 104, and server system 106. In one
embodiment, the client systems 108, test synchronization
system 104, and server system 106 may include one or more
computing devices such as server computers, desktop com-
puters, laptop computer systems, netbooks, etc. Furthermore,
the client systems 108, test synchronization system 104, and
server system 106 may be coupled to a computer network 104
that communicates via any of the standard protocols for the
exchange of information. The computer network 104 may be
a private network (e.g., a local area network (LAN), etc.) ora
public network (e.g., Internet, etc.).

In one embodiment, client systems 108 execute a client-
based application for interacting with server system 106. In
one embodiment, the client-based application is a graphical
user interface (GUI) based application that enables a user of
a client system to interact with data at the server system 106.
For example, the client-based application may provide a GUI
that enables a user to access a database, manage files, or any
other web-based application in order to access data, add data,
delete data, etc. from the server system 106 via standard user
interface commands such as mouse clicks, typed commands,
mouse-overs, etc.

In one embodiment, a plurality of client systems 108
execute the same GUI-based application, or different GUI
applications, for interacting with the server system 106.
Because two or more client systems 108 may perform the
same action on data maintained by the server system 106, an
error condition might arise. For example, two client systems
may display a listing of files stored on server system 106.
When a first client system deletes a file via the client’s GUI
interface to server system 106, that file is no longer available
atserver system 106 to any client systems. However, a second
client system that is displaying files at the server system 106
may not have been refreshed to reflect the first client system’s
deletion of the file. When the second client system then seeks
to perform an action on the file, such as access the file, transfer
the file, delete the file, etc., the second client will receive an
error message for attempting to perform an action on a file
that does not exist.

In one embodiment, test synchronization system 104 is
responsible for synchronizing the execution of testing appli-
cation commands at a plurality of client computer systems,
such as client systems 108. In one embodiment, test synchro-
nization system 104 distributes test commands to client sys-
tems 108 in order to cause, and therefore test, error conditions
at client systems 108. In the example discussed above, a
time-dependent error occurred when a client system
attempted to access a file after the file had been deleted from
the server system 106.

As discussed in greater detail below, test synchronization
system 104 manages testing commands so that the client
systems 108 will execute commands for a test application in
parallel. That is, in one embodiment, test synchronization
system 104 ensures that the same commands/actions are per-
formed by each of the plurality of client systems 108 at the
same time, or within a very small margin of time.

US 9,064,054 B2

3

FIG. 2 is a block diagram of one embodiment of a system
200 for synchronizing test commands. In one embodiment,
system 200 provides additional details to the architecture
discussed above with respect to FIG. 1.

In one embodiment, test synchronization system 104
includes a testing proxy 204 that interacts with a test appli-
cation 202. In one embodiment, test application 202 is soft-
ware code written to interface with the graphical user inter-
face (GUI) library of a client computer system. In one
embodiment, the test application 202 operates on the user
interface library to simulate user actions, such as mouse click-
ing on a GUI interface of a client application, entering text,
executing commands, accessing files, deleting files, transfer-
ring files, etc. In one embodiment, the test application 202 is
written to interface with a single client computer system.

In one embodiment, the test application 202 is written in a
computer language corresponding to the Ul library 210. That
is, the UI library simulates user actions that may be taken on
aclient 208 application’s GUI. For example, the test applica-
tion 202 may be a JAVA™ based testing application driving a
UT library written in JAVA to test a web based GUI run on a
client computer system. In one embodiment, test application
202 resides on test system 104 and interacts with testing
proxy 204. In another embodiment, test application 202 is
executed at a remote location and interacts with testing proxy
204 via a network, such as network 102 of FIG. 1.

In one embodiment, testing proxy 204 receives test com-
mands from test application 202 in order to distribute and
synchronize execution of the received testing commands
among a plurality of client computer systems, such as clients
208-1 to 208-N. In one embodiment, testing proxy 204
includes a user interface (UI) library interface 220 that
receives test commands (e.g., simulated mouse clicks, key-
strokes, execution requests, etc.) from test application 202. In
one embodiment, Ul library interface 220 simulates a client-
based user interface (UI) library, such as UI library 210-1
through 210-N. In one embodiment, UI library interface 220
simulates a client Ul library so that test application 202 needs
only be written as if a test application were to be executed on
a single client computing system.

In one embodiment, test synchronization proxy 204
ensures the sequential commands of a test program, such as
test application 202, are each synchronized for execution in
parallel. In one embodiment, test synchronization proxy 204
synchronizes execution of test application 202 commands at
a plurality of client systems, a plurality of libraries, etc.
Although test synchronization proxy 204 is described herein
with respect to a test application for a user interface library,
test synchronization proxy 204 may be utilized to synchro-
nize testing between any test application and a library whose
functions/commands the test application are to invoke.

In one embodiment, testing controller 222 is responsible
for distributing and scheduling the synchronous execution of
test commands at a plurality of client computer systems.
Because test controller 222 distributes and synchronizes test
commands, the writing of a test application is simplified so
that distribution of commands, synchronizing distribution of
commands, scheduling commands, etc. need not be coded in
the test application.

In one embodiment, testing controller 222 synchronizes
the distribution, and therefore execution, of test commands
from the test application 202. In one embodiment, for each
test command of the test application 202, testing controller
222 distributes the same test command to each of a plurality
of clients 208 via a Ul library 210 of the clients 208. For
example, testing controller may distribute the same mouse
click, file access request, file deletion request, file rename

20

40

45

4

request, upload/download request, etc. as specified in test
application 202 to each client 208 to simulate an end-user of
aclient computer system entering the command in a graphical
user interface (GUI). In one embodiment, the same command
is provided at the same time by testing controller 222 to each
client 208. Each client computer system 208-1 through N
executes the test application command to interact with server
system 206. Because the testing controller 222 distributed the
command to each client 208 at the same time, each client will
in turn execute the command to interact with the server sys-
tem 206 at the same time.

In one embodiment, synchronous distribution and execu-
tion of test commands will cause error conditions to be
encountered by one or more of client systems 208-1 through
N. In the example discussed above, where a file has been
deleted on the server system 206 by a first client computer
system (e.g., client 208-1), other client computer systems
(e.g., clients 208-2 through 208-N) that attempt to delete the
same file will receive error messages. In one embodiment,
testing controller 222 reports the error messages displayed by
the UI libraries 210 to the test application 202 via the Ul
library interface 220. Thus, test application 202, which may
be written as if to be executed on a single client system, may
receive error messages from parallel and synchronous execu-
tion of test commands at a plurality of clients 208.

In one embodiment, testing controller 222 further waits to
receive responses from all clients 208-1 through 208-N
before distributing a next command in the test application
202. Testing controller 222 waits for responses from each
client 208 for each distributed test command, before sending
out a next test command to each of the client systems, to
facilitate the parallel execution of all commands from a test
application. In one embodiment, the parallel distribution of
the same commands at the same time enables the testing of
time-based errors at client GUI-based applications for inter-
acting with a server system 206.

FIG. 3 illustrates one embodiment of testing application
commands synchronized by a test synchronization system.
As discussed above, a test application 302 may include sev-
eral commands that simulate user interactions with a graphi-
cal user interface, such as mouse clicks, mouse overs, text
entry, command execution requests, etc. In one embodiment,
a testing proxy 204 interacts with the test application 302 as
discussed above in FIG. 2 in order to distribute and synchro-
nize the execution of test commands among a plurality of
client computer systems. Furthermore, as discussed above,
test synchronization proxy 204 may be utilized to synchro-
nize testing between any test application and a library whose
functions/commands the test application are to invoke.

Inone embodiment, the commands (i.e., command A, com-
mand B, command C, etc.) of test application 302 may be
received by UI library interface 220 and provided to testing
controller 222. In one embodiment, testing controller 222
distributes a command, such as command A, to three client
computer systems at time to 304. As is illustrated, different
client computer systems may take different amounts of time
to execute command A.

In one embodiment, testing controller 222 waits for each
client computer system to finish execution of command A
before distributing command B to the three client computer
systems at time t1 306. In one embodiment, testing controller
222 continues to synchronize the distribution, and thus par-
allel execution, of the same command at the same time to each
of the client computer systems.

FIG. 4 is a flow diagram of one embodiment of a method
400 for synchronizing testing application commands. The
method 400 is performed by processing logic that may com-

US 9,064,054 B2

5

prise hardware (circuitry, dedicated logic, etc.), software
(such as is run on a general purpose computer system or a
dedicated machine), firmware, or a combination. In one
embodiment, the method 400 is performed by testing proxy
204 of FIG. 2.

Referring to FIG. 4, the process begins by receiving a
command from a test application (processing block 402). In
one embodiment, the test application is a software application
that simulates a user’s interactions with a graphical user inter-
face. In one embodiment, the user interface commands simu-
late common user interactions with an application, such as
user mouse clicks, text entry, etc. In one embodiment, the user
interface command received from the test application is a
single command to be executed by a single client computer
system.

Processing logic forwards the command to a testing con-
troller (processing block 404). In one embodiment, the com-
mand is distributed to two or more client computer systems,
for execution by application libraries on the client computer
systems (processing block 406). In one embodiment, the
command is replicated for distribution to multiple client com-
puter systems at the same time. In one embodiment, because
processing logic replicates and distributes the command a the
same time, the command may be executed in parallel by the
client computer systems. In one embodiment, the command
causes the client computer systems to interact with a server
computer system. Exemplary interactions with the server
computer systems may include the client computer systems
attempting to access files stored on the server computer sys-
tem, delete files from the server computer system, rename
files, move files, etc.

Processing logic receives responses to the command from
the client computer systems (processing block 408). In one
embodiment, the responses may be received at different
times, as different client computer systems, as well as a server
system, may take varying amounts of time to process any
given command. Furthermore, in one embodiment, one or
more of the received responses may include error messages.

Processing logic determines if responses have been
received from all client computer systems (processing block
410). When not all client computer systems have responded to
the command, processing logic returns to processing block
408 to await for additional responses. However, when all
client computer systems have responded to the command, the
responses to the command are reported to the test application
(processing block 412). In one embodiment, processing logic
may report the responses to the test application as the
responses are received.

Processing logic determines if there are additional com-
mands in the test application (processing block 414). When
there are additional commands in the test application, pro-
cessing logic returns to processing block 404 and the test
command is forwarded to a testing controller for distribution
to two or more client computer systems. However, when there
are no additional test commands, the process ends.

FIG. 5 illustrates a diagrammatic representation of a
machine in the exemplary form of a computer system 500
within which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines in a LAN, an intranet, an extranet, or the Internet.
The machine may operate in the capacity of aserver oraclient
machine in client-server network environment, or as a peer
machine in a peer-to-peer (or distributed) network environ-
ment. The machine may be a personal computer (PC), a tablet
PC, a set-top box (STB), a Personal Digital Assistant (PDA),

10

15

20

25

30

35

40

45

50

55

60

65

6

a cellular telephone, a web appliance, a server, a network
router, switch or bridge, or any machine capable of executing
a set of instructions (sequential or otherwise) that specify
actions to be taken by that machine. Further, while only a
single machine is illustrated, the term “machine” shall also be
taken to include any collection of machines that individually
or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein.

The exemplary computer system 500 includes a processing
device 502, a main memory 504 (e.g., read-only memory
(ROM), flash memory, dynamic random access memory
(DRAM) such as synchronous DRAM (SDRAM), etc.), a
static memory 506 (e.g., flash memory, static random access
memory (SRAM), etc.), and a data storage device 516, which
communicate with each other via a bus 505.

Processing device 502 represents one or more general-
purpose processing devices such as a microprocessor, central
processing unit, or the like. More particularly, the processing
device 502 may be a complex instruction set computing
(CISC) microprocessor, reduced instruction set computing
(RISC) microprocessor, very long instruction word (VLIW)
microprocessor, or a processing device implementing other
instruction sets or processors implementing a combination of
instruction sets. The processing device 502 may also be one or
more special-purpose processing devices such as an applica-
tion specific integrated circuit (ASIC), a field programmable
gate array (FPGA), a digital signal processor (DSP), network
processor, or the like. The processing device 502 is config-
ured to execute the test synchronization system 526 for per-
forming the operations and steps discussed herein.

The computer system 500 may further include a network
interface device 508. The computer system 500 also may
include a video display unit 510 (e.g., a liquid crystal display
(LCD) or a cathode ray tube (CRT)), an alphanumeric input
device 512 (e.g., a keyboard), a cursor control device 514
(e.g., a mouse), and a signal generation device 516 (e.g., a
speaker).

The data storage device 516 may include a computer-read-
able storage medium 524 on which is stored one or more sets
of instructions (e.g., the test synchronization system 526)
embodying any one or more of the methodologies or func-
tions described herein. The test synchronization system 526
may also reside, completely or at least partially, within the
main memory 504 and/or within the processing device 502
during execution thereof by the computer system 500, the
main memory 504 and the processing device 502 also consti-
tuting computer-readable storage media. The test synchroni-
zation system 526 may further be transmitted or received over
a network 520 via the network interface device 508.

While the computer-readable storage medium 516 is
shown in an exemplary embodiment to be a single medium,
the term “computer-readable storage medium” should be
taken to include a single medium or multiple media (e.g., a
centralized or distributed database, and/or associated caches
and servers) that store the one or more sets of instructions.
The term “computer-readable storage medium” shall also be
taken to include any medium that is capable of storing, encod-
ing or carrying a set of instructions for execution by the
machine and that cause the machine to perform any one or
more of the methodologies of the present invention. The term
“computer-readable storage medium” shall accordingly be
taken to include, but not be limited to, solid-state memories,
optical media, and magnetic media.

Inthe foregoing description, numerous details are set forth.
It will be apparent, however, to one of ordinary skill in the art
having the benefit of this disclosure, that the present invention

US 9,064,054 B2

7

may be practiced without these specific details. In some
instances, well-known structures and devices are shown in
block diagram form, rather than in detail, in order to avoid
obscuring the present invention.

Some portions of the detailed description that follow are
presented in terms of algorithms and symbolic representa-
tions of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to most
effectively convey the substance of their work to others
skilled in the art. An algorithm is here, and generally, con-
ceived to be a self-consistent sequence of steps leading to a
desired result. The steps are those requiring physical manipu-
lations of physical quantities. Usually, though not necessarily,
these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “receive”, “distribute”, “report”, or the like, refer to the
actions and processes of a computer system, or similar elec-
tronic computing device, that manipulates and transforms
data represented as physical (e.g., electronic) quantities
within the computer system’s registers and memories into
other data similarly represented as physical quantities within
the computer system memories or registers or other such
information storage, transmission or display devices.

The present invention also relates to an apparatus for per-
forming the operations herein. This apparatus may be spe-
cially constructed for the required purposes, or it may com-
prise a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program may be stored in a computer read-
able storage medium, such as, but not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs, and
magnetic-optical disks, read-only memories (ROMs), ran-
dom access memories (RAMs), EPROMs, EEPROMs, mag-
netic or optical cards, or any type of media suitable for storing
electronic instructions.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct a more specialized apparatus to per-
form the required method steps. The required structure for a
variety of these systems will appear from the description
below. In addition, the present invention is not described with
reference to any particular programming language. It will be
appreciated that a variety of programming languages may be
used to implement the teachings of the invention as described
herein.

It is to be understood that the above description is intended
to be illustrative, and not restrictive. Many other embodi-
ments will be apparent to those of skill in the art upon reading
and understanding the above description. The scope of the
invention should, therefore, be determined with reference to
the appended claims, along with the full scope of equivalents
to which such claims are entitled.

The foregoing description, for purpose of explanation, has
been described with reference to specific embodiments. How-

10

15

20

25

30

35

40

45

50

55

60

65

8

ever, the illustrative discussions above are not intended to be
exhaustive or to limit the invention to the precise forms dis-
closed. Many modifications and variations are possible in
view of the above teachings. The embodiments were chosen
and described in order to best explain the principles of the
invention and its practical applications, to thereby enable
others skilled in the art to best utilize the invention and vari-
ous embodiments with various modifications as may be
suited to the particular use contemplated.
We claim:
1. A method comprising:
receiving, by a testing proxy executing by a processing
device, a plurality of commands from a test application;

distributing, by the testing proxy and over a network, a first
command from the plurality of commands to a plurality
of client computer systems to be executed in parallel on
the plurality of client computer systems, each client
computer system to issue the first command to a server
computer system to detect an error at the server com-
puter caused by distributing the first command to the
plurality of client computer systems;

determining whether all of the plurality of client computer

systems have completed execution of the first command;
and
in response to determining that all of the plurality of client
computer systems have completed the execution of the
first command, distributing, by the testing proxy, a sec-
ond command from the plurality of commands to each of
the plurality of client computer systems over the net-
work, wherein the second command is to be executed on
the plurality of client computer systems in parallel.
2. The method of claim 1, wherein a same command for
each of the received plurality of commands is distributed at a
same time to all of the plurality of client computer systems.
3. The method of claim 1 further comprising reporting to
the test application responses received from the plurality of
client computer systems for commands issued to the server
computer system.
4. The method of claim 1, wherein the test application
issues graphical user interface commands to test a client-
based graphical user interface application.
5. The method of claim 4, wherein the graphical user inter-
face commands issued by the test application simulate user
commands.
6. The method of claim 4, wherein the graphical user inter-
face commands issued by the test application are to change a
state of data maintained at the server computer system.
7. The method of claim 1, wherein at least one of the
received plurality of commands forces error conditions at the
server computer system when issued at a same time by two or
more of the plurality of client computer systems.
8. The method of claim 1, wherein the test application is an
application to test two or more client computer systems.
9. A non-transitory computer readable storage medium
comprising instructions, that when executed by a processing
device, cause the processing device to:
receive, by the processing device executing a testing proxy,
a plurality of commands from a test application;

distribute, by the processing device executing the testing
proxy and over a network, a first command from the
plurality of commands to a plurality of client computer
systems to be executed in parallel on the plurality of
client computer systems, each client computer system to
issue the first command to a server computer system to
detect an error at the server computer caused by distrib-
uting the first command to the plurality of client com-
puter systems;

US 9,064,054 B2

9

determine whether all of the plurality of client computer
systems have completed execution of the first command;
and

in response to a determination that all of the plurality of

client computer systems have completed the execution
of the first command, distribute, by the testing proxy, a
second command from the plurality of commands to
each of the plurality of client computer systems over the
network, wherein the second command is to be executed
on the plurality of client computer systems in parallel.

10. The computer readable storage medium of claim 9,
wherein a same command for each of the received plurality of
commands is distributed at a same time to all of the plurality
of client computer systems.

11. The computer readable storage medium of claim 9,
wherein the processing device is further to report to the test
application responses received from the plurality of client
computer systems for commands issued to the server com-
puter system.

12. The computer readable storage medium of claim 9,
wherein the test application issues graphical user interface
commands to test a client-based graphical user interface
application.

13. The computer readable storage medium of claim 12,
wherein the graphical user interface commands issued by the
test application simulate user commands.

14. The computer readable storage medium of claim 12,
wherein the graphical user interface commands issued by the
test application are to change a state of data maintained at the
server computer system.

15. The computer readable storage medium of claim 9,
wherein at least one of the received plurality of commands
forces error conditions at the server computer system when
issued at a same time by two or more of the plurality of client
computer systems.

5

15

20

25

30

10

16. The computer readable storage medium of claim 9,
wherein the test application is an application to test two or
more client computer systems.

17. A system comprising:

a memory; and

a processing device operatively coupled with the memory

to execute a testing proxy to:

receive a plurality of commands from a test application,

distribute over a network a first command from the plu-
rality of commands to a plurality of client computer
systems to be executed in parallel on the plurality of
client computer systems, each client computer system
to issue the first command to a server computer sys-
tem to detect an error at the server computer caused by
distributing the first command to the plurality of client
computer systems,

determine whether all of the plurality of client computer
systems have completed execution of the first com-
mand; and

in response to a determination that all of the plurality of
client computer systems has completed the execution
of the first command, distribute a second command
from the plurality of commands to each of the plural-
ity of client computer systems over the network,
wherein the second command is to be executed on the
plurality of client computer systems in parallel.

18. The system of claim 17, wherein a same command for
each of the received plurality of commands is distributed at a
same time to all of the plurality of client computer systems.

19. The system of claim 17, wherein the processing device
is further to report responses received from the plurality of
client computer systems for commands issued to the server
computer system to the test application.

20. The system of claim 17, wherein the test application is
to issue graphical user interface commands to test a client-
based graphical user interface application.

#* #* #* #* #*

